Skip to content

2024

Understanding Logging in Kubernetes - From Containers to Nodes

Logging is an essential component of monitoring and maintaining applications, particularly in a complex environment like Kubernetes. Logs provide valuable insights into how an application behaves, identifying errors, performance issues, and security threats. However, logging in Kubernetes is challenging due to the dynamic and distributed nature of the platform. This blog post will explain where logs originate within Kubernetes, the importance of log collectors, and compare popular logging solutions such as Fluentd, Fluent Bit, and AWS CloudWatch Container Insights.

Where Do Logs Come From in Kubernetes?

In Kubernetes, logs are generated at various layers, including:

  • Containers: Each container in a Kubernetes pod generates its own logs. These logs are written to the container's standard output (stdout) and standard error (stderr). The container runtime (such as Docker or containerd) manages these logs.

  • Pods: Since a pod can have multiple containers, it aggregates logs from all its containers. However, Kubernetes does not automatically store or forward pod logs. They are ephemeral and typically vanish when a pod is terminated or restarted.

  • Nodes: Each Kubernetes node has a logging agent that collects logs from all the pods running on the node. These logs are stored locally on the node, but like pod logs, they are temporary and could be lost if the node fails or is replaced.

Why Not Just Use AWS CloudWatch for EKS?

AWS CloudWatch is a powerful tool for monitoring and logging in AWS environments, including Elastic Kubernetes Service (EKS). While it may seem convenient to use CloudWatch for EKS logging, it has limitations when managing the full spectrum of log collection and processing needs.

Limitations of AWS CloudWatch for Kubernetes Logging:
  • Lack of Flexibility: CloudWatch works well for simple, centralized logging, but it may not offer the flexibility needed to manage complex Kubernetes environments. It doesn't support advanced log parsing, enrichment, or filtering natively, which are often required in real-world applications.

  • Cost Management: CloudWatch pricing is based on the volume of logs ingested and stored. In a Kubernetes environment where log volumes can grow exponentially, this can lead to unexpectedly high costs without offering enough control over data retention and processing.

  • Multi-cluster Aggregation: Kubernetes often runs across multiple clusters. CloudWatch isn't designed to natively support cross-cluster log aggregation, which can make it challenging to get a unified view of your logs.

Given these challenges, many teams opt for specialized log collectors to gain better control over their logging infrastructure.

The Need for a Log Collector

A log collector is a tool designed to aggregate, process, and forward logs from different parts of the Kubernetes infrastructure. Instead of relying solely on CloudWatch, a log collector allows you to:

  • Process Logs Efficiently: Filter and transform logs in real time, only forwarding the necessary information to CloudWatch or other logging backends.
  • Enhance Log Enrichment: Enrich logs with additional metadata like pod labels, namespace, or node name, making it easier to analyze and search through logs.
  • Optimize Cost: Reduce the volume of logs sent to CloudWatch by filtering irrelevant logs, thus minimizing cost.
  • Centralized Aggregation: Collect logs from multiple clusters, enabling better observability across environments.

There are several tools available for collecting and managing logs in Kubernetes, including Fluentd, Fluent Bit, and AWS CloudWatch Container Insights. Each tool has its own advantages and trade-offs.

Fluentd
  • Overview: Fluentd is a full-fledged, open-source data collector designed to unify log data. It offers a wide range of plugins to integrate with various systems like Elasticsearch, S3, and CloudWatch.

  • Pros:

  • Highly customizable with over 500 plugins.
  • Supports advanced log processing, filtering, and transformation.
  • Works well in large, complex environments with heavy log processing needs.

  • Cons:

  • Heavier in terms of resource consumption due to its more extensive feature set.
  • Requires more configuration and tuning, which can be complex.

  • Use Case: Best suited for large-scale Kubernetes clusters where complex log management and advanced processing are needed.

Fluent Bit
  • Overview: Fluent Bit is a lightweight, fast log processor and forwarder that is part of the Fluentd ecosystem. It shares much of Fluentd's functionality but with a lower resource footprint, making it ideal for environments with limited resources.

  • Pros:

  • Lightweight and fast, ideal for resource-constrained environments.
  • Supports many of the same plugins as Fluentd, including integration with AWS services.
  • Less configuration overhead than Fluentd.

  • Cons:

  • Limited advanced processing capabilities compared to Fluentd.
  • Not as feature-rich, which may limit its use in more complex log aggregation pipelines.

  • Use Case: Ideal for lightweight logging needs, edge devices, or smaller Kubernetes clusters where resource efficiency is a priority.

AWS CloudWatch Container Insights
  • Overview: AWS CloudWatch Container Insights is a managed service provided by AWS to collect, aggregate, and visualize logs and metrics from your containerized applications on EKS.

  • Pros:

  • Seamless integration with AWS services, no need for additional setup.
  • Provides built-in visualizations and monitoring for Kubernetes metrics and logs.
  • Simplifies log collection for AWS-native Kubernetes environments.

  • Cons:

  • Limited customization and flexibility compared to Fluentd and Fluent Bit.
  • Can become expensive as log volume increases.
  • Primarily focuses on AWS, lacking multi-cloud or on-premise integration options.

  • Use Case: Best suited for teams fully committed to the AWS ecosystem and those looking for a managed logging service with minimal setup.

Conclusion

Logging in Kubernetes requires more than just capturing container output; it involves orchestrating logs across multiple layers of the platform. AWS CloudWatch can handle basic logging, but to get the most out of your logs while optimizing costs, a dedicated log collector is often necessary. Fluentd, Fluent Bit, and AWS CloudWatch Container Insights each provide unique benefits depending on your environment's scale and complexity.

  • Fluentd: Best for complex environments requiring extensive log processing and integration.
  • Fluent Bit: Lightweight and efficient for smaller clusters or environments where resource usage is a concern.
  • AWS CloudWatch Container Insights: An excellent option for those who want AWS-native integration with minimal setup but may not need the flexibility of the other solutions.

By choosing the right log collection strategy, you can ensure better observability and performance in your Kubernetes clusters while keeping costs under control.

瞭解 Kubernetes 中的日誌記錄 - 從容器到節點

日誌記錄是監控和維護應用程式的重要組成部分,尤其是在像 Kubernetes 這樣複雜的環境中。日誌能夠提供應用程式行為的寶貴見解,有助於識別錯誤、性能問題和安全威脅。然而,由於 Kubernetes 平台的動態和分散式特性,日誌記錄面臨著諸多挑戰。本篇文章將解釋 Kubernetes 中日誌的來源、日誌收集器的重要性,並比較 Fluentd、Fluent Bit 和 AWS CloudWatch Container Insights 等流行的日誌記錄解決方案。

Kubernetes 中的日誌從哪裡來?

在 Kubernetes 中,日誌產生於多個層次,包括:

  • 容器: 每個 Kubernetes pod 中的容器都會生成自己的日誌,這些日誌寫入到容器的標準輸出 (stdout) 和標準錯誤 (stderr) 中。容器執行環境(如 Docker 或 containerd)負責管理這些日誌。

  • Pod: Pod 可以包含多個容器,因此會聚合來自所有容器的日誌。然而,Kubernetes 並不會自動儲存或轉發 pod 的日誌。這些日誌是臨時的,通常會在 pod 終止或重啟時消失。

  • 節點: 每個 Kubernetes 節點都有一個日誌代理,負責收集該節點上運行的所有 pod 的日誌。這些日誌儲存在節點本地,但與 pod 日誌類似,如果節點故障或被替換,這些日誌也可能丟失。

為什麼不直接使用 AWS CloudWatch 來處理 EKS 的日誌?

AWS CloudWatch 是一款功能強大的工具,用於在 AWS 環境(包括 Elastic Kubernetes Service,簡稱 EKS)中進行監控和日誌記錄。雖然在 EKS 上使用 CloudWatch 似乎很方便,但在處理全面的日誌收集和處理需求時,它有一定的限制。

AWS CloudWatch 在 Kubernetes 日誌記錄中的局限性:
  • 靈活性不足: CloudWatch 對於簡單的集中式日誌記錄非常有用,但在管理複雜的 Kubernetes 環境時可能缺乏所需的靈活性。它不原生支持高級的日誌解析、豐富化或過濾,這些功能在實際應用中經常需要。

  • 成本管理: CloudWatch 的定價基於日誌的攝取量和儲存量。在 Kubernetes 環境中,日誌量可能呈指數級增長,這可能導致成本出乎意料地高昂,並且缺乏對數據保留和處理的足夠控制。

  • 多集群聚合: Kubernetes 通常運行於多個集群之上。CloudWatch 沒有為跨集群日誌聚合設計原生支持,這可能使得獲得統一的日誌視圖變得困難。

鑑於這些挑戰,許多團隊選擇使用專門的日誌收集器來更好地控制其日誌基礎架構。

日誌收集器的必要性

日誌收集器是一種專門設計用於聚合、處理和轉發來自 Kubernetes 基礎設施中不同部分的日誌的工具。相比完全依賴 CloudWatch,日誌收集器能夠讓你:

  • 高效處理日誌: 實時過濾和轉換日誌,只將必要的信息轉發至 CloudWatch 或其他日誌後端。
  • 增強日誌豐富化: 通過添加 pod 標籤、命名空間或節點名稱等額外元數據來豐富日誌,讓日誌分析和搜尋變得更加容易。
  • 優化成本: 通過過濾掉不相關的日誌來減少發送至 CloudWatch 的日誌量,從而降低成本。
  • 集中聚合: 從多個集群收集日誌,實現更好的環境觀察能力。

流行日誌收集器的比較:Fluentd、Fluent Bit 和 AWS CloudWatch Container Insights

以下是幾款 Kubernetes 日誌記錄工具的優劣比較:

Fluentd
  • 概述: Fluentd 是一款全功能的開源數據收集器,旨在統一日誌數據。它提供了多種插件來與 Elasticsearch、S3 和 CloudWatch 等系統集成。

  • 優點:

  • 擁有超過 500 個插件,功能非常強大。
  • 支持高級日誌處理、過濾和轉換。
  • 適用於大型、複雜的環境,特別是需要大量日誌處理的場景。

  • 缺點:

  • 資源消耗較大,因為其功能更為全面。
  • 配置和調整可能比較複雜。

  • 適用場景: 適用於需要複雜日誌管理和高級處理的大型 Kubernetes 集群。

Fluent Bit
  • 概述: Fluent Bit 是 Fluentd 生態系統的一部分,是一個輕量級且快速的日誌處理和轉發工具。它與 Fluentd 功能相似,但資源佔用更低,適用於資源有限的環境。

  • 優點:

  • 輕量且快速,非常適合資源有限的環境。
  • 支持與 AWS 服務集成的多種插件。
  • 配置簡單,操作門檻低。

  • 缺點:

  • 與 Fluentd 相比,進階處理能力有限。
  • 功能不如 Fluentd 豐富,因此可能無法滿足複雜的日誌處理需求。

  • 適用場景: 適合輕量級日誌需求的場景,例如資源受限的 Kubernetes 集群或邊緣設備。

AWS CloudWatch Container Insights
  • 概述: AWS CloudWatch Container Insights 是 AWS 提供的一項管理服務,用於從 EKS 上的容器化應用收集、聚合和可視化日誌及指標。

  • 優點:

  • 與 AWS 服務無縫集成,無需額外配置。
  • 提供內建的 Kubernetes 日誌及指標可視化功能。
  • 簡化了 AWS 原生 Kubernetes 環境的日誌收集。

  • 缺點:

  • 與 Fluentd 和 Fluent Bit 相比,定制性和靈活性不足。
  • 隨著日誌量增加,成本可能變得高昂。
  • 主要針對 AWS,缺乏多雲或本地部署的集成選項。

  • 適用場景: 適用於完全依賴 AWS 生態系統的團隊,或者需要最少配置的托管日誌服務。

結論

在 Kubernetes 中進行日誌記錄不僅僅是捕獲容器輸出,還需要協調來自平台多層的日誌。AWS CloudWatch 能夠處理基本日誌記錄,但若要最大化日誌的價值,同時控制成本,通常需要專門的日誌收集器。Fluentd、Fluent Bit 和 AWS CloudWatch Container Insights 根據環境的規模和複雜性提供不同的優勢:

  • Fluentd: 適用於需要廣泛日誌處理和集成的複雜環境。
  • Fluent Bit: 適合資源受限的集群或需要高效日誌記錄的小型環境。
  • AWS CloudWatch Container Insights: 適合希望最小化配置的 AWS 原生集成團隊。

選擇正確的日誌收集策略,可以確保 Kubernetes 集群的更佳可觀察性和性能,同時控制成本。

Mastering Long-Term Thinking - How to Build a Resilient and Innovative Organization

In a remote mountain in West Texas, a unique project is taking shape. A clock, known as the 10,000-Year Clock, is being built to last and tick for 10,000 years. Its century hand moves once every 100 years, and its cuckoo emerges once every millennium. The clock is a symbol of long-term thinking, highlighting the value of considering the future—both in business and in life.

The commitment to long-term thinking is critical to success in many areas. When organizations focus only on short-term results, they often find themselves competing in crowded spaces. But extending the time horizon allows for innovation, growth, and endeavors that short-term thinking could never support.

The 10,000-Year Vision Applied to the Digital Era

So, how does this principle of long-term thinking apply to the digital era? In today's fast-paced world, many organizations struggle to balance speed with sustainability. Digital strategies are often focused on quick wins, but a different approach is needed: thinking long-term, even in a rapidly changing environment. Key elements to avoid stagnation include customer obsession, skepticism about proxies, adopting external trends, and making high-velocity decisions. These essentials aren’t tied to financial or market goals—they are cultural elements that leaders can control.

This approach defends against becoming what some call a "Day 2" company—a company that is slow, reactive, and focused more on maintaining the status quo than on innovating. Organizations need to be cautious not to let processes dominate outcomes. Instead, they should constantly ask, "Do we own the process, or does the process own us?"

Innovation through Trial and Error

Innovation is born from a culture of "forward failure"—the idea that failure is a necessary step toward success. Many successful projects began as small experiments, nurtured over time, driven by a set of guiding principles. These principles create a framework for a culture that embraces trial and error. High-judgment failure—where an initiative was worth trying but didn’t work—should lead to learning and adapting. The cycle of failure, learning, and trying again drives the most important successes.

This iterative process allows organizations to build momentum and discover what works. It’s about selecting people who are dissatisfied with the status quo, people who notice small inefficiencies and want to fix them. Innovation, in this context, is not about avoiding failure but learning from it and moving forward with greater insight.

Avoiding Bureaucracy and Embracing Speed

One of the biggest threats to innovation is bureaucracy. Bureaucracy slows down decision-making and stifles creativity. High-performing individuals often hate bureaucracy, while underperformers tend to hide behind it, creating the kind of friction that slows progress. Strong processes with measurable outcomes can help eliminate bureaucracy, exposing underperformers and allowing top talent to excel.

Recognizing bureaucracy isn’t always easy. It often manifests when rules can’t be explained, when they don’t benefit the customer, or when there is no clear path for resolving issues. When these symptoms arise, bureaucracy is likely creeping in. High standards and attention to detail are essential to avoiding this pitfall, ensuring that processes serve the business rather than becoming burdensome.

Conclusion: The Key to Long-Term Success

The philosophy is clear: long-term thinking, a culture of innovation, and a resistance to bureaucracy are essential to staying competitive in the digital age. Whether you’re running a small startup or a global enterprise, these principles can help build a resilient organization that thrives on change and embraces the future. By focusing on long-term goals, fostering a culture of experimentation, and eliminating unnecessary bureaucracy, you can set the stage for sustained success, just like the 10,000-Year Clock—built to last.

掌握長期思維:如何打造具有韌性與創新精神的組織

在美國德克薩斯州西部的偏遠山區,一個獨特的項目正在成形。一座名為「一萬年鐘」的時鐘正被建造,設計目標是能持續運行並計時一萬年。這座時鐘的世紀指針每百年移動一次,而千年鳥則每千年出現一次。這座時鐘象徵著長期思維,強調在商業與生活中考慮未來的價值。

對於長期思維的承諾在許多領域都是成功的關鍵。當組織僅關注短期結果時,往往會發現自己在擁擠的市場中競爭。但延長時間視野則可以帶來創新、增長以及短期思維所無法支持的努力。

一萬年願景在數位時代的應用

那麼,長期思維的原則如何應用於數位時代呢?在當今這個節奏快速的世界中,許多組織都在努力平衡速度與可持續性。數位策略往往著眼於快速成果,但一種不同的方式是必要的:在快速變化的環境中思考長遠。避免停滯的關鍵元素包括:以客戶為中心、對代理指標保持懷疑、採納外部趨勢,以及進行高速度決策。這些要素並不依附於財務或市場目標,而是領導者可以掌控的文化層面。

這種方法能防止組織淪為所謂的「第二天公司」——一個遲鈍、被動,並且更關注維持現狀而非創新的公司。組織需要謹慎,不能讓流程凌駕於結果之上。相反地,他們應該不斷問自己:「我們是擁有流程,還是被流程所掌控?」

通過試驗與錯誤實現創新

創新的誕生源於一種「向前失敗」的文化——失敗是通往成功的必要步驟。許多成功的項目始於小型實驗,在時間的滋養下成長,由一套指導原則驅動。這些原則為一種接受試驗與錯誤的文化建立了框架。高判斷力失敗——即值得嘗試但未成功的倡議——應引導出學習與調整。這種失敗、學習與再嘗試的循環推動了最重要的成功。

這種迭代過程使組織能夠建立動能並發現有效的方法。它關乎選擇那些對現狀不滿意的人——那些注意到小問題並希望改進的人。在這種語境中,創新不是關於避免失敗,而是從中學習,並以更深刻的洞察力前進。

避免官僚主義並擁抱速度

創新的最大威脅之一是官僚主義。官僚主義會拖慢決策過程並扼殺創造力。高績效個體通常討厭官僚主義,而低績效者則傾向於躲在其中,造成減緩進展的摩擦。透過具有可衡量結果的強大流程可以幫助消除官僚主義,暴露低績效者,並讓頂尖人才得以發揮。

認識到官僚主義並不總是容易的。它往往表現在規則無法解釋、規則不利於客戶,或問題解決路徑不明確時。當這些症狀出現時,官僚主義很可能正在滲入。高標準與對細節的關注是避免這種陷阱的關鍵,確保流程為業務服務,而非成為負擔。

結論:長期成功的關鍵

理念非常清楚:長期思維、創新文化,以及抵制官僚主義是保持競爭力的必要條件。無論您經營的是一家小型初創公司還是全球企業,這些原則都有助於打造一個在變化中茁壯成長並擁抱未來的韌性組織。通過專注於長期目標、培養實驗文化以及消除不必要的官僚主義,您可以為持續的成功奠定基礎,就像一萬年鐘一樣——為長久而建。

Understanding Kubernetes Autoscaling - Speed and Traffic Capacity

Autoscaling is a powerful feature in Kubernetes that ensures your applications scale dynamically to handle increasing or decreasing traffic. However, one common question is: How fast can Kubernetes scale out, and how much traffic can it handle?

Two Levels of Horizontal Scaling

In Kubernetes, autoscaling operates on two levels: Pod-level autoscaling and Node-level autoscaling.

1. Pod-level Autoscaling (Horizontal Pod Autoscaler - HPA)

The Horizontal Pod Autoscaler (HPA) monitors the resource usage of your pods, such as CPU or memory, and automatically scales the number of replicas up or down based on demand. Here's what you need to know:

  • Scaling Speed: Pod-level autoscaling is generally fast, typically scaling out in less than a minute depending on how the cluster is configured. However, certain configurations can make scaling even faster:
  • PriorityClass: Pods can have different priorities based on their importance. Critical pods with higher priority can be scheduled faster during scaling events. This ensures that important workloads are prioritized when resources are constrained.
  • Pinned and Pre-scaled HPA: You can configure the HPA to pre-scale pods if you anticipate spikes in traffic. This allows the system to respond quicker to traffic surges without waiting for resource thresholds to be breached.

  • Traffic Capacity: The amount of traffic your pods can handle depends on the resource allocation (e.g., CPU, memory) for each pod. If each pod can handle a fixed number of requests per second, scaling out additional pods ensures that the overall system can manage larger traffic loads. By carefully configuring pod resource limits and HPA thresholds, you can optimize the system to balance resource efficiency and traffic capacity.

2. Node-level Autoscaling (Cluster Autoscaler or Karpenter)

When scaling pods isn't enough, Kubernetes can also scale nodes (virtual machines) in the cluster to accommodate more pods.

  • Scaling Speed: Scaling nodes can take longer than scaling pods because it involves provisioning new instances from your cloud provider (AWS, GCP, etc.). Typically, scaling out nodes can take a few minutes, depending on the cloud provider's infrastructure and the size of the instance. To optimize node-level scaling:
  • Karpenter: A newer alternative to Cluster Autoscaler, Karpenter optimizes node scaling by efficiently provisioning nodes with the exact resources required. It is often faster than the traditional autoscaler and can bring up nodes in seconds.
  • Over-provisioning: To mitigate the time it takes to scale nodes, you can "over-provision" nodes. This means keeping a small buffer of idle nodes that are ready to handle a sudden surge in traffic. This approach ensures that your system can scale instantly without waiting for new nodes to spin up.

  • Traffic Capacity: At the node level, the capacity to handle traffic is related to how many pods can be scheduled on the available nodes. By scaling out nodes, you increase the cluster's total resource pool, allowing for more pods and thus more traffic handling capability.

Conclusion

Kubernetes autoscaling is highly dynamic, with two distinct layers working together to ensure your application scales as needed.

  • Pod-level scaling is rapid, generally happening in less than a minute, especially when pre-scaled or with proper PriorityClass settings.
  • Node-level scaling may take a few minutes, but tools like Karpenter and over-provisioning can help speed up the process.

By effectively managing both pod and node autoscaling, you can ensure that your application can handle large traffic surges while maintaining efficiency.

瞭解 Kubernetes 自動擴展 - 速度與流量容量

Kubernetes 的自動擴展功能是非常強大的,它確保了應用程序可以根據流量的增減動態擴展。然而,一個常見的問題是:Kubernetes 的擴展速度有多快,能處理多大的流量?

兩層水平擴展

在 Kubernetes 中,自動擴展分為兩個層次:Pod 層級的自動擴展節點層級的自動擴展

1. Pod 層級的自動擴展 (Horizontal Pod Autoscaler - HPA)

水平 Pod 自動擴展器 (HPA) 會監控 Pods 的資源使用情況(例如 CPU 或記憶體),並根據需求自動調整副本的數量。以下是一些重要資訊:

  • 擴展速度:Pod 層級的自動擴展通常非常快速,一般在 不到一分鐘 內完成,具體取決於集群的配置。不過,某些配置可以使擴展更快:
  • PriorityClass:Pods 可以根據其重要性設置不同的優先級。具有較高優先級的關鍵 Pods 在擴展事件中可以更快被調度,確保重要的工作負載在資源受限時被優先處理。
  • 固定和預擴展 HPA:如果預計流量會激增,可以將 HPA 配置為預先擴展 Pods,這樣系統可以更快響應流量高峰,而不需要等待資源閾值被觸發。

  • 流量容量:Pods 能夠處理的流量取決於每個 Pod 的資源分配(例如 CPU、記憶體)。如果每個 Pod 可以處理固定數量的每秒請求,通過擴展 Pods 的數量可以確保整體系統能處理更大的流量負載。通過精心配置 Pod 的資源限制和 HPA 閾值,可以優化系統以平衡資源效率與流量容量。

2. 節點層級的自動擴展 (Cluster Autoscaler 或 Karpenter)

當擴展 Pods 不足以應對需求時,Kubernetes 還可以擴展集群中的節點(虛擬機器)來容納更多的 Pods。

  • 擴展速度:節點的擴展比 Pods 擴展耗時更久,因為它需要從雲服務商(AWS、GCP 等)調用新實例。通常,節點擴展需要 幾分鐘 時間,具體取決於雲服務商的基礎設施和實例的大小。為了優化節點層級的擴展,可以採取以下措施:
  • Karpenter:作為 Cluster Autoscaler 的新替代方案,Karpenter 通過高效地配置所需資源來優化節點擴展。它通常比傳統的自動擴展器更快,能在幾秒內啟動節點。
  • 過量配置:為了減少擴展節點所需的時間,可以採取「過量配置」的方式,即保持一小部分閒置節點,以隨時應對流量激增。這種方式確保系統可以立即擴展,而無需等待新節點啟動。

  • 流量容量:在節點層級,流量處理能力與可安排 Pods 的節點數量有關。通過擴展節點,可以增加整個集群的資源池總量,從而容納更多的 Pods,並提升流量處理能力。

結論

Kubernetes 的自動擴展非常動態,兩個層次協同工作以確保應用程序按需擴展。

  • Pod 層級的擴展 速度快,通常在不到一分鐘內完成,尤其是在預先擴展或使用適當 PriorityClass 設置時。
  • 節點層級的擴展 可能需要幾分鐘,但工具如 Karpenter 和過量配置可以幫助加速這一過程。

通過有效地管理 Pod 和節點的自動擴展,您可以確保應用程序在處理大流量高峰時仍能保持高效運行。

Engage in Energizing Activities - The Power of Exercise

Our energy and mood play a significant role in how we present ourselves in everyday interactions. Whether it’s a casual coffee meeting, an important networking event, or a high-stakes job interview, the way we feel mentally and physically influences how others perceive us. One way to sustain that energy and radiate positivity is through energizing activities—and at the top of that list is exercise.

Exercise isn’t just about physical fitness. It enhances every aspect of your well-being—mental, emotional, and cognitive. Here’s how exercise helps you operate at your best: it boosts mood by releasing endorphins, the body's natural feel-good chemicals, instantly lifting your spirits. It increases self-esteem with each workout, giving you a sense of accomplishment and confidence. Feeling good about yourself improves sociability, making networking and interviews feel less daunting. Regular exercise also builds discipline, enhancing motivation to pursue personal and professional goals. Additionally, it sharpens focus and memory, helping you perform better in conversations, presentations, and problem-solving scenarios.

These benefits become even more evident when exercise becomes a consistent part of your routine. However, exercise is not one-size-fits-all. What works for one person might not suit another. The key is to engage in activities that energize and uplift you. Walking or jogging is a simple way to clear your mind while enjoying the outdoors. Listening to music while exercising can amplify motivation and enjoyment. Group classes or team sports build sociability while keeping you active. Yoga or Pilates are great for mental clarity and reducing stress. Strength training boosts both physical strength and self-confidence. It doesn’t matter what activity you choose—what’s important is that it fits your lifestyle and energizes you.

How you feel internally reflects externally. When you exercise regularly, you’ll notice your energy levels soar, impacting every aspect of your life—from casual conversations to professional encounters. Whether you’re prepping for a job interview or attending a networking event, having the physical and mental strength to engage meaningfully can make a lasting impression.

The benefits of making exercise a part of your routine go beyond the gym. It’s about showing up for yourself, building resilience, and radiating confidence. So, lace up your sneakers, put on your favorite playlist, and get moving. When you energize your body, you also recharge your mind, and the positive results will follow—one step, one workout at a time.

從活力活動中獲得能量 - 運動的力量

我們的精力和情緒對我們在日常互動中的表現有著重大影響。無論是隨意的咖啡聚會、重要的社交活動,還是關鍵的求職面試,我們的心理和身體狀態都會影響他人對我們的看法。一種持續保持能量並散發積極氛圍的方法就是參與令人振奮的活動,而其中最重要的就是運動。

運動不僅僅是關於身體健康,它還能提升您的整體福祉——包括心理、情感和認知。以下是運動如何幫助您發揮最佳狀態的方法:運動通過釋放內啡肽(身體的天然愉悅化學物質)提升情緒,即時改善您的心情。每次運動都能帶來成就感和自信心,提升自我評價。感覺良好能增強社交能力,讓人際網絡和面試不再令人生畏。規律的運動還能培養紀律性,增強追求個人和職業目標的動力。此外,它還能提升專注力和記憶力,幫助您在對話、演講和解決問題的情境中表現得更出色。

當運動成為日常生活的一部分時,這些好處會變得更加明顯。然而,運動並非「一刀切」的方案,適合一個人的方式可能並不適合另一個人。關鍵在於參與能為您注入活力並讓您感到快樂的活動。例如,散步或慢跑是一種簡單的方法,既可以清理思緒,也能享受戶外時光。聽音樂運動可以增強動力和樂趣。參加團體課程或團隊運動可以在保持活躍的同時建立社交關係。瑜伽或普拉提非常適合提升心理清晰度並減輕壓力。力量訓練則能提升身體力量與自信心。不管您選擇什麼活動,重要的是它適合您的生活方式並能讓您充滿活力。

內在的感受會反映在外在的表現上。當您定期運動時,會發現自己的精力充沛,影響到生活的方方面面——從隨意的對話到職場互動。不管是準備求職面試還是參加社交活動,擁有身體與心理的力量來有意義地參與互動,可以留下深刻的印象。

讓運動成為日常的一部分,其好處遠遠超出健身房。這是關於為自己努力,建立韌性,並散發自信。所以,穿上您的運動鞋,播放最喜歡的音樂,開始運動吧。當您為身體充電的同時,也為心靈充電,積極的效果將隨之而來——一步一個腳印,每次鍛煉都邁向成功。

Embrace Career Growth - Exploring Possibilities, Navigating Change, and Building a Meaningful Future

The path to a fulfilling career is rarely straightforward. In today’s world, it’s important to explore different possibilities instead of focusing on just one. Life can bring unexpected changes, and the career path you once thought was clear may take surprising turns. A good way to handle this uncertainty is by developing many possible versions of yourself. These are ideas of who you might become, ranging from realistic and well-planned to imaginative and uncertain. Some of these possibilities will appeal more to you than others, but they are all worth exploring because they give you flexibility to adapt as your life changes.

Transitions in your career often bring a sense of uncertainty. During this time, you may feel lost, caught between the end of your old job and the unknown future. This in-between stage, called liminality, can feel uncomfortable, but it plays an important role in your growth. It allows you to process your emotions, reflect on your past, and consider new opportunities without rushing into decisions. Taking time to reflect during these transitions can lead to better choices, helping you avoid missing out on paths you hadn’t considered before.

In moments of change or crisis, like during the COVID-19 pandemic, people often find unexpected opportunities. With fewer traditional options available, many shift their focus to personal projects, new skills, or ideas that had been put on hold. These moments of downtime aren’t wasted—they allow your mind to recharge and spark new ideas. Rest is just as valuable as hard work because it helps shape who you are becoming.

Another key to building a meaningful career is to engage in activities outside of your main job. While it’s important to focus on doing well at work, relying only on your current role can limit your long-term growth. Side projects, advisory roles, or joining boards are great ways to gain new experiences, develop new skills, and expand your network. These activities expose you to different ideas, industries, and people, making you more adaptable and creative. They also bring personal satisfaction and open doors to future opportunities that you might not find in your day job alone.

Trying out different roles or stretch assignments can also help you grow. They let you explore new fields without leaving your current job and build experience step by step. You might take part in consulting projects, teach a class, or contribute to a startup. These smaller commitments allow you to compare different paths, understand what suits you best, and gradually build new strengths.

In the end, a career is not a single journey with a clear destination. It’s an ongoing process of learning, experimenting, and adjusting. Life rarely moves in a straight line, and that’s okay. By embracing change, exploring multiple possibilities, and engaging in meaningful side activities, you create a flexible and rewarding career. Growth comes from trying, learning, and imagining new futures, not just from achieving specific goals. The key is to stay curious, open to new opportunities, and willing to explore who you might become next.

擁抱職業成長:探索可能性、應對變化、構建有意義的未來

追求令人滿足的職業道路往往不是一條直線。在現今的世界中,探索不同的可能性比僅僅專注於一條道路更加重要。生活可能帶來意想不到的變化,您曾經認為清晰的職業道路可能會出現驚人的轉折。應對這種不確定性的好方法是發展多個可能的自我版本,這些版本包括從現實且規劃周密的選擇到富有想像力且尚未確定的選項。雖然這些可能性中有些可能比其他更吸引您,但都值得探索,因為它們賦予您隨生活變化而調整的靈活性。

職業生涯中的轉變通常會帶來不確定感。在這段期間,您可能感到迷茫,徘徊於過去工作的結束與未知的未來之間。這種過渡階段被稱為「閾限性」,雖然可能讓人感到不適,但在您的成長中起著重要作用。它讓您有機會處理情緒,反思過去,並在不急於做決定的情況下考慮新的機會。這些轉變期間的反思往往能帶來更好的選擇,幫助您避免錯過之前未曾考慮過的道路。

在變化或危機的時刻,例如 COVID-19 疫情期間,人們往往會發現意想不到的機會。當傳統選項減少時,許多人將重心轉向個人項目、新技能,或之前被擱置的想法。這些停歇的時刻並非浪費——它們讓您的大腦得以重新充電並激發新的靈感。休息與努力工作同樣重要,因為它幫助塑造了您未來的樣子。

構建有意義的職業生涯的另一個關鍵是在主要工作之外積極參與其他活動。雖然專注於做好本職工作很重要,但僅依賴當前的角色可能會限制您的長期成長。副業、諮詢角色或加入董事會是獲取新經驗、發展新技能和擴展人脈的絕佳方式。這些活動讓您接觸到不同的想法、行業和人群,使您變得更具適應力和創造力。同時,它們也能帶來個人滿足感,並為您開啟工作之外可能難以發現的未來機會。

嘗試不同的角色或挑戰性任務也有助於您的成長。這些嘗試讓您在不離開當前工作的情況下探索新領域,並逐步建立經驗。您可以參與諮詢項目、教課或為初創公司做貢獻。這些較小的承諾讓您可以比較不同的道路,了解最適合自己的方向,並逐漸建立新技能。

最終,職業生涯並非一段明確目標的單一路徑。它是一個持續學習、實驗和調整的過程。生活很少按直線前進,而這無妨。通過擁抱變化、探索多種可能性,並參與有意義的副業,您可以創造出靈活且令人滿意的職業生涯。成長來自於嘗試、學習和想像新的未來,而不僅僅是完成具體目標。關鍵在於保持好奇心,對新機會保持開放,並願意探索您下一步可能成為的樣子。